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We present the results from verification and
convergence analysis of adaptive mesh refine-
ment (AMR) calculations for two different AMR
codes. Code verification is extremely important
for science-based prediction and simulation. Pre-
vious verification efforts focused on the conver-
gence behavior of uniform grid. With AMR, we
can obtain more accurate results with substan-
tially less computational cost. The ideal goal of
AMR is to achieve the same accuracy in the re-
finement region as in the corresponding fine uni-
form grid. However, test results shows that AMR
may not achieve the convergence of the equiva-
lent finest uniform grid. In some cases, numeri-
cal results with AMR have even larger error than
those without AMR. AMR can also trigger an in-
stability for some applications.

We have investigated three model problems.
The first two have smooth solutions and the third
one contains a shock discontinuity. All of them
have exact solutions and represent a variety of
problems. We have solved the problems with
two hydrodynamics AMR packages: patch-based
AMR-MHD [3] and cell-based RAGE AMR. In
AMR-MHD, we have tested two time-step meth-
ods: local step where the time step varies with the
refinement level and locked step where the same
stepsize is used for all refinement levels.

The first model is a linear wave problem which
advects a Gaussian density profile along the di-
agonal of a rectangular domain. Figure 1 shows
that one AMR calculation by AMR-MHD pack-
age achieves the same accuracy as the finest uni-
form grid. Figure 2 shows the performance of
RAGE AMR. We see that only a few AMR cal-
culations achieve better performance in L∞ error.
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Figure 1: Error vs. Time for AMR-MHD. AMR
with local or locked step (802AMR(1)) achieves
accuracy of the finest resolution grid (1602).
AMR(n) denotes AMR with n-level refinement.
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Error versus ∆ x at t=1 for wave problem
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Figure 2: Error vs. local spacing for the RAGE
AMR calculation. The same error with a larger
∆x means better convergence. Two abnormal
things: three-level refinement for 1002 base grid
(shown as 1002AMR(3)) has larger error than one
or two level refinement; 1-level AMR for 4002

base grid has larger error than without AMR.

The second model problem is a vortex advected
along the diagonal of a rectangular domain. It
has exactly the same density solution as the lin-
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ear wave problem. However, the velocity field
and pressure are not constant, and the problem
becomes essentially a nonlinear problem. Figure
3 shows the impact of nonlinearity through the
results of the AMR-MHD package: AMR with
locked step has larger error than AMR with the lo-
cal step, and even has larger error than the coarse
grid without AMR after some time. Our results
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Figure 3: Error vs. Time for vortex problems.
AMR with locked step has larger error than with
local step. It even has larger error than coarse
uniform grid after t=50.

with RAGE AMR for this problem exhibit greater
errors than for the linear wave problem due to the
nonlinearity of the problem (see [1] for detail).

The third example is Noh’s shock tube prob-
lem. For planar Noh’s problem solved on Carte-
sian grid, AMR-MHD achieves accuracy of the
finest resolution grid, whereas RAGE AMR di-
verges with more refinement levels. The spherical
Noh’s problem is solved on (r,z) cylindrical grid
where we observed a numerical shock instability,
the carbuncle phenomenon, in both AMR results
with three or more refinement levels (see Figure
4). This anomaly was also observed by Gisler [2].

Our comparison of these two AMR codes on
these problems has raised several issues regard-
ing the effectiveness of RAGE AMR code; see [1]
for more details. Some issues have already been

Figure 4: Density plot for different refinement
levels of the same finest resolutions for Noh’s
spherical problem. The three-level refinement has
a density bubble straddling the shock near r = 0.

addressed by the code development team.
We have also found two AMR convergence is-

sues that may occur in a general AMR code: (1)
AMR with locked time step has larger disper-
sion (phase) error than corresponding fine uni-
form grid. (2) AMR can trigger the carbuncle
instability at shock front for cylindrical (r,z) co-
ordinate near z-axes. Both issues need further re-
search.
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